If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=-16Y^2+72Y+5
We move all terms to the left:
-(-16Y^2+72Y+5)=0
We get rid of parentheses
16Y^2-72Y-5=0
a = 16; b = -72; c = -5;
Δ = b2-4ac
Δ = -722-4·16·(-5)
Δ = 5504
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5504}=\sqrt{64*86}=\sqrt{64}*\sqrt{86}=8\sqrt{86}$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-72)-8\sqrt{86}}{2*16}=\frac{72-8\sqrt{86}}{32} $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-72)+8\sqrt{86}}{2*16}=\frac{72+8\sqrt{86}}{32} $
| 3^2x+5=2187 | | 5(2a-3)=6a+12 | | 15x3+165x2+450x=0 | | Y=-16x2+72x+5 | | 2^(2x)*9^(x)=1/6 | | Y=x-1x=6 | | x/2-2x+30=0 | | -3v+-3+7v=4v+4+-5 | | -.5x+1.1=-2.9 | | 7^(p^2-4)=1 | | Y=x+8x=2 | | 12x2=27 | | 2(x+5)^2-2=6 | | Y=x+8. | | Y=x+8.X=2 | | (7+x-1)x-1=144 | | Y=x-1x=10 | | 5x+2-2x=18=180 | | Y=x-4x=10 | | Y=x+6x=2 | | Y=x+3x=1 | | Y=x+5x=1 | | -2x+7=-360 | | 7x/3+5x=44 | | 3x^2-3=-21 | | 32=-12x-8 | | 2/3x-3=1/4x+2 | | 5x=3x-12 | | 5x/2+6x=850 | | 2(3x+3)+2x=54 | | 2-(x-11)=9(x+10) | | -5(x+4)+15=-20 |